0%

Lecture 2- State Space Representation

Lecture 2

Lecture 2- State Space Representation

symbols

$\dot{X}(t)$ derivative of state vector

$X(t)$ state vector | nx1

$Y(t)$ output vector | px1

$U(t)$ input/control vector | mx1

$A$ symstem matrix | nxn

$B$ input matrix | nxm

$C$ output matrix | pxn

$D$ feedforward matrix | pxm

set $X(t)|_{t=0} = 0​$, do Laplace Transfrom

so,

thus, transfer function $G(s)$

if $X(t)|_{t=0} = X(0)$

then

Here set $\Phi(t) \equiv L[(sI-A)^{-1}] = e^{At} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}​$

in other way

Here $\frac{1}{s^{k+1}} = L^{-1}[\frac{t^k}{k!}]$

So we can get $(sI-A)^{-1}|_{s=0} = -A^{-1}, \lim_{s\to \infty} s(sI-A)^{-1}=I​$