Lecture 2
Lecture 2- State Space Representation
symbols
$\dot{X}(t)$ derivative of state vector
$X(t)$ state vector | nx1
$Y(t)$ output vector | px1
$U(t)$ input/control vector | mx1
$A$ symstem matrix | nxn
$B$ input matrix | nxm
$C$ output matrix | pxn
$D$ feedforward matrix | pxm
set $X(t)|_{t=0} = 0$, do Laplace Transfrom
so,
thus, transfer function $G(s)$
if $X(t)|_{t=0} = X(0)$
then
Here set $\Phi(t) \equiv L[(sI-A)^{-1}] = e^{At} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}$
in other way
Here $\frac{1}{s^{k+1}} = L^{-1}[\frac{t^k}{k!}]$
So we can get $(sI-A)^{-1}|_{s=0} = -A^{-1}, \lim_{s\to \infty} s(sI-A)^{-1}=I$