Laplace Transform
Fourier
Proof: see “Harmonious Analysis” CHAPTER 3 P37 ~ P38\
https://drive.google.com/file/d/0B7t_mQHDlsRsdnZkSE9LbndfOHM/view
https://yannisparissis.wordpress.com/2011/03/10/dmat0101-notes-3-the-fourier-transform-on-l1/
Fourier tranform
Fourier Inversion
Here is the Inversion of g(t)
Laplace and Fourier
set $f(t) e^{-\beta t}u(t) \equiv g(t), \quad f^{\ast}(t) \equiv g^{\ast}(t) e^{\beta t}$\
(I) $\forall [a, b] \subset (-\infty, +\infty)$\
g(t) satisfy Dirichlet conditions for [a, b]
(II) $\int_{-\infty}^{+\infty} g(t) dt < M$
So, Fourier Transform, $s = \beta + j\omega$, we would have
Then we have Inversion
Define Laplace Transform
Definition of LT
可以选择$\beta$, 使$Re\{\text{poles of }F(s)\} < \beta$, 此时