0%

DTFT

DTFT

When $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$, then we have $\lambda < 1$ that

If we replace kernel function: $[\text{u}(t-(n-\lambda)T)-\text{u}(t-(n+\lambda)T)]$ with function

We still have:

So, we have:

because $\text{sgn}(t) <=> \frac{1}{j\pi f}$, then we have $\frac{1}{j\pi t} <=> \text{sgn}(-f)=-\text{sgn}(f)$,

Thus means

To sum up:

for $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$, we have

Now define $\omega = 2\pi f/f_s$, then

Formula

then replace $f\to t, t\to -f$, having

Thus Fourier pair $1(t) <-> \delta(f)$, now we want to verify:

Here we have:

一个矩形脉冲的傅里叶变换是sinc函数

一个矩形脉冲离散采样之后的离散傅里叶变换就是Dirichlet函数

Moreover, $ \frac{\sin(\pi (t’+\Delta) (2A+1))}{\sin(\pi (t’+\Delta) )}= \frac{\sin(\pi t’(2A+1))}{\sin(\pi t’ )}, \Delta\in Z$, the period is 1:

So, $\lim_{A\to \infty} \frac{\sin(\pi t’(2A+1))}{\sin(\pi t’ )}[\text{u}(t’+0.5)-\text{u}(t’-0.5)] = \delta(t’)$, then we have

Thus,

DFT

consider to sample $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$ 0~NT, as a period

For freq domain:

Reconstruction: