DTFT
When $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$, then we have $\lambda < 1$ that
If we replace kernel function: $[\text{u}(t-(n-\lambda)T)-\text{u}(t-(n+\lambda)T)]$ with function
We still have:
So, we have:
because $\text{sgn}(t) <=> \frac{1}{j\pi f}$, then we have $\frac{1}{j\pi t} <=> \text{sgn}(-f)=-\text{sgn}(f)$,
Thus means
To sum up:
for $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$, we have
Now define $\omega = 2\pi f/f_s$, then
Formula
then replace $f\to t, t\to -f$, having
Thus Fourier pair $1(t) <-> \delta(f)$, now we want to verify:
Here we have:
一个矩形脉冲的傅里叶变换是sinc函数
一个矩形脉冲离散采样之后的离散傅里叶变换就是Dirichlet函数
Moreover, $ \frac{\sin(\pi (t’+\Delta) (2A+1))}{\sin(\pi (t’+\Delta) )}= \frac{\sin(\pi t’(2A+1))}{\sin(\pi t’ )}, \Delta\in Z$, the period is 1:
So, $\lim_{A\to \infty} \frac{\sin(\pi t’(2A+1))}{\sin(\pi t’ )}[\text{u}(t’+0.5)-\text{u}(t’-0.5)] = \delta(t’)$, then we have
Thus,
DFT
consider to sample $\hat{x}(t) = x(t) p(t) = x(t) \cdot \sum \delta(t-nT)= \sum x(nT) \delta(t-nT)$ 0~NT, as a period
For freq domain:
Reconstruction: